Algebra Detour

We need to develop some algebraic tools in order to finish the proof of the Nullstellensatz. specifically, we want to show:

Thm: If k is algebraically closed, the maximal ideals of $k[x_1, ..., x_n]$ are of the form $(x_1 - a_1, ..., x_n - a_n)$, where $a_i \in k$.

Note that a HW #2 problem says that those ideals are always maximal but we want to show that these are exactly the maximal ideals.

This theorem does not hold over an arbitrary field: $E_X: (x^2+1) \subseteq \mathbb{R}[x]$ is prime and thus maximal (since $\mathbb{R}[x]$ is a PID).

Rings + Modules

let R be a ring and M an R-module.

<u>Def</u>: M is a finitely generated R-module if there are $m_{1,...,m_n} \in M$ s.t. for all meM, there are $a_{1,...,a_n} \in R$ such that $m = \sum a_i m_i$.

Now, suppose S is a ring, $R \subseteq S$ a subring. We can treat S as an R-module, but in this special case, S is called an <u>R-algebra</u>. Def: If S is a finitely generated R-module, thun S is <u>module-finite</u> (or, simply, <u>finite</u>) over R.

let V1,..., Vn & S. We denote the subring generated by R, V1,..., Vn in S by R[V1,..., Vn]. (Roughly, this is the ring of "polynomials" in V1,..., Vn with coefficients in R.)

EX: $\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{R}$ is the set of elements of the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Q}$.

Def: S is ring-finite over R (or, a finitely generated
R-algebra) if
$$S=R[v_1,...,v_n]$$
 for some $v_1,...,v_n \in S$.

Note: If
$$S = R(v_1, ..., v_n)$$
, there is a natural surjection
 $R[x_1, ..., x_n] \longrightarrow S$

where $R \xrightarrow{id} R$ and $x_i \mapsto V_i$.

Def: $f \in R[x]$ is monic if it is of the form $x^n + a_{n-1}x^{n-1} + \dots + a_0$. i.e. The initial coefficient is l.

Def: $v \in S$ is integral over R if there is a monic polynomial $f \in R[\pi]$ s.t. f(v) = 0. (algebraic, if R and S are fields). S is integral over R if every $v \in S$ is. Check:

1.) Module - and ring - finiteness are both transitive (integrality is trickier
 2.) Module - finite => ring - finite

We'll soon show that the set of elements integral over R is a subring (in fact a subalgebra) of S, called the <u>integral closure</u> of R in S. If R is an integral domain, the integral closure of R (without reference to a bigger ring) is the integral closure in its field of fractions.

Ex: 1.) R[x] is ring-finite over R but not module-finite or integral. 2.) R[x] (x2) = R + Rx is module-finite, ring-finite, and integral over R. 3.) Q[VZ, VZ, VZ,...] is integral over Q, but not ring-or module - finite.

In fact, module-finiteness is a stronger condition than integrality. We'll prove a slightly weaker assertion:

Prop:
$$R \subseteq S_{n} S_{n}$$
 integral domain, $v \in S_{n} TFAE$:
1.) v is integral over R_{n}

2.) R[v] is module-finite over R.

3.) Thure's a subring $R' \subseteq S$ containing R[v] that's

module-finite over R.

2.) \rightarrow 3.) R' = R[v]

$$\frac{Pf}{Pf} \stackrel{(i)}{=} \stackrel{(i)}{=} 2.) \qquad \forall^{n} + a_{i} \vee^{n+1} + ... + a_{n} = 0, \quad a_{i} \in \mathbb{R}$$

$$\implies \vee^{n} \in \mathbb{R} + \mathbb{R} \vee + ... + \mathbb{R} \vee^{n-1} \implies \text{ any power of } \vee \text{ is in there}$$

$$\implies \mathbb{R}[\nu] \text{ is module-finite.}$$

 \Rightarrow vI - $\begin{pmatrix} a_{ij} \end{pmatrix}$ has $\begin{pmatrix} w_i \\ \vdots \\ w_n \end{pmatrix}$ in its kernel, to it has zero determinant \Rightarrow vⁿ + lower deg terms = 0 \Rightarrow v is integral over R. []

Pf: a, b integral over R.

$$\Rightarrow$$
 R[a] module-finite over R, and b integral over R[a]
 \Rightarrow R[a,b] is module-finite over R[a] and these over R.
If R'=R[a,b] and v=ab or a=b and we apply the

Prop, V is integral over R. D

Now assume S is integral over R. If we write S=R[V1,...,Vn], then R[V,] is mod-finite over R.

 V_{k+1} is integral over $\mathbb{R}[V_{1,...,}V_{k}]$ so $\mathbb{R}[V_{1,...,}V_{k+1}]$ is module-finite over $\mathbb{R}[V_{1,...,}V_{k}]$, and thus over \mathbb{R} .

Fields

If $K \subseteq L$ are fields, $K(v_1, ..., v_n)$ is the field of fractions/quotient field of $K[v_1, ..., v_n]$ (also the smallest field containing $K, v_1, ..., v_n$).

 $L = K(v_1, \ldots, v_n) \text{ for some } v_1, \ldots, v_n \in L.$

L is an <u>algebraic</u> extension of K if all the elements of L are algebraic over K.

Ex: $\mathbb{Q}[\sqrt{5}](=\mathbb{Q}(\sqrt{5}))$ is an algebraic extension of \mathbb{Q} (elts of the form $\alpha + \beta\sqrt{5}$, α , $\beta \in \mathbb{Q}$). In fact it's module finite over \mathbb{Q} .

 $\mathbb{Q}(\pi)$ is not algebraic/ \mathbb{Q} .

Check: If K C L are fields, then the elements of K that are algebraic over K form a subfield.

<u>Claim</u>: Although k(x) is a finitely generated field extension of k, it's not ring-finite over k.

<u>PF</u>: Suppose k(x)= k[V,,...,Vn].

Thus $\exists b \in k[x] s.t. bv_i \in k[x] \forall v_i$ (i.e. clear denominators) Let $c \in k[x]$ be irreducible s.t. c doesn't divide b.

We can write $\frac{1}{c}$ as a k-linear combination of monomials in the Vi's.

=>
$$\exists$$
 N>0 s.t. $\frac{b^{N}}{c} \in k[x]$, a contradiction. \Box

<u>Claim</u>: k[x] is its own integral closure in k(x).

Pf: let
$$z \in k(x)$$
 integral over $k[x]$.
Thus $z^n + a_{n-1}z^{n-1} + \dots + a_0 = 0$, $a_i \in k[x]$.
If we write $z = \frac{f}{g}$, $f, g \in k[x]$ rel. prime, thus multiplying
through by g^n we get:
 $f^n + a_{n-1}f^{n-1}g + \dots + a_0g^n = 0 \implies g$ divides f^n so $g \in k$.

Now we need one big theorem before we can finish the proof of the Nullstellensatz:

If
$$n = 1$$
, consider $K[\pi] \longrightarrow K[v_i]$
 $x \longmapsto v_i$
 $K[v_i]$ is a field, so $k[v_i] \stackrel{c}{=} \frac{K[\pi]}{(f)}$, $f \neq 0$.

Thus $f(v_i) = 0 \implies v_i$ is algebraic over $K \implies K[v_i]$ is module-finite over K. Now assume the statement holds for extensions gen. by n-1 elts.

Then
$$L = K(v_i)[v_2, ..., v_n]$$
 is module-finite over $K(v_i) \implies L$ algebraic over $K(v_i)$.

Case 2:
$$v_i$$
 not algebraic over K.
Then $K(x) \cong K(v_i)$ (exercise)

Each
$$v_i$$
 satisfies $V_i^{n_i} + a_{i_1} V_{i_1}^{n_{i-1}} + \dots + a_{i_n} = 0$, $a_{i_j} \in K(v_i)$

Choose $a \in K(v_1)$ that is a multiple of all denominators of the a_{ij} . Multiplying by a^{hi} , we get

$$(av_i)^{n_i} + aa_{ii}(av_i)^{n_i-1} = 0$$
, where all coeffs are now in K[v_i].

Thus avi is integral over K[vi].

Moreover, for zel, JN>0 s.t. a^Nz e K[v,][avz,av3,...,avn]. Thus, since integral elts form a ring => a^Nz is integral over K[vi].

Set
$$z = \frac{1}{C} \in K(v_1)$$
 where $C \in k[v_1]$ is rel. prime to a.

Then
$$\frac{a^{N}}{c}$$
 is integral over $k[v_{i}]$, some N>0. So $\frac{a^{N}}{c} \in K[v_{i}]$,
a contradiction by the above claim. \Box

Now we can complete the proof of the Nullstellensatz:

Theorem: If k is algebraically closed and $m \subseteq k[x_1, ..., x_n] = R$ is a maximal ideal, then $m = (x_1 - a_1, ..., x_n - a_n)$, where $a_i \in k$.

L is ring-finite over k, so L is algebraic over k.

If zel, then f(z)=0, some fek[x]. But k is algebraically closed, so zek. Thus L=k.

Thus, for all x_i , $\exists a_i \in k$ s.t. $\overline{x_i} = \overline{a_i}$ in $L \Rightarrow x_i - a_i \in m$.

 \Rightarrow $(x_1 - a_1, ..., x_n - a_n) \subseteq m$, but, is maximal, so they're equal. \Box